Lexical selection for machine translation
نویسنده
چکیده
منابع مشابه
A Hybrid Machine Translation System Based on a Monotone Decoder
In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...
متن کاملThe Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language
Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...
متن کاملGraph-Based Collective Lexical Selection for Statistical Machine Translation
Lexical selection is of great importance to statistical machine translation. In this paper, we propose a graph-based framework for collective lexical selection. The framework is established on a translation graph that captures not only local associations between source-side content words and their target translations but also targetside global dependencies in terms of relatedness among target i...
متن کاملStatistical Machine Translation through Global Lexical Selection and Sentence Reconstruction
Machine translation of a source language sentence involves selecting appropriate target language words and ordering the selected words to form a well-formed target language sentence. Most of the previous work on statistical machine translation relies on (local) associations of target words/phrases with source words/phrases for lexical selection. In contrast, in this paper, we present a novel ap...
متن کاملA Context-Aware Topic Model for Statistical Machine Translation
Lexical selection is crucial for statistical machine translation. Previous studies separately exploit sentence-level contexts and documentlevel topics for lexical selection, neglecting their correlations. In this paper, we propose a context-aware topic model for lexical selection, which not only models local contexts and global topics but also captures their correlations. The model uses target-...
متن کاملEvaluation of EuroWordNet- and LCS-Based Lexical Resources for Machine Translation
We evaluate two types of lexical resources with respect to their applicability to interlingual machine translation: (1) a EuroWordNetbased database of bilingual links between Spanish and English words; and (2) a repository of semantically classified verbs with their corresponding Lexical Conceptual Structure (LCS) representations. We examine the utility of these two resources for the task of le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011